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Abstract

Salience theory is a powerful alternative to prospect theory in accounting for paradoxes

of choice under risk. In risk choice settings where the majority of subjects exhibits un-

stable risk attitudes, we experimentally investigate the descriptive and predictive power

of salience theory, and compare it with cumulative prospect theory. We find that both

theories unsurprisingly outperform expected utility theory, which does not account for

the instability of risk preferences and cumulative prospect theory outperforms salience

theory by an insignificant margin. We attribute this small gap to the unsophisticated

specification of the salience function and the substantial heterogeneity of the local think-

ing parameter. Salience theory captures important features of unstable risk preferences,

yet further work on the functional representation of the theory is necessary to make it as

applicable as cumulative prospect theory.
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1 Introduction

Expected utility theory (henceforth denoted as EUT), the standard tool with which

economists used to model risk, assumes that individuals respond to risk in a consistent manner.

The theory may provide a valuable normative guide, but it faces difficulties while playing the

role of a descriptive theory. Mounting empirical evidence suggests that people systematically

switch between risk aversion and risk-seeking, depending on the situation. Allais (1953) shows

that when people choose between two lotteries, adding a common consequence to both lotteries

might change the preference order, which contradicts the independence axiom. Lichtenstein

and Slovic (1971) find that subjects tend to choose relative safer lotteries when making choices,

but are willing to pay more for risky ones. Moreover, Kahneman and Tversky (1979, 1981)

suggest that framing lotteries differently or replacing gains with losses could lead to a reversal

of preference orders and other paradoxes.

In the past several decades, alternatives of EUT have been developed to explain this insta-

bility of risk preference. In this paper, we are particularly interested in Bordalo et al. (2012)’s

salience theory (henceforth denoted as ST). The idea of the theory is that a decision maker’s

attention is drawn to salient consequences, and the probabilities are distorted accordingly. Bor-

dalo et al. (2012) introduced the theory as a unified explanation for several anomalies related

to unstable risk preferences, such as excessive risk-seeking behaviour and the Allais paradox.

Importantly, the new theory can explain these phenomena using only a small set of assumptions

about the function that guides how salient lottery outcomes are perceived. ST also makes new

predictions which contradict prospect theory (Kahneman and Tversky, 1979). In addtion, the

authors presented the results of a series of online experiments as empirical evidence.

This novel theory has attracted considerable attention from empirical reseachers. Kontek

(2016) points out that the certainty equivalents of lotteries are undefined according the theory

for some range of probabilities, and the theory also violates monotonicity. Nielsen et al. (2018)

report an online experiment with 473 participants. They manipulate the salience value of the

good and bad consequences in each lottery and the results are consistent with the prediction

of ST. Frydman and Mormann (2018) replicate the Allais paradox experiment with one ad-

justment: they set two lotteries to be correlated. ST relies on the joint distribution of the

lotteries, while other theories, such as Tversky and Kahneman (1992)’s cumulative prospect
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theory (henceforth denoted as CPT) do not, so Frydman and Mormann (2018) conclude that ST

provides a coherent framework to understand the Allais paradox. Dertwinkel-Kalt and Köster

(2019) link risk preference to the skewness of the probability distribution of lotteries, and ex-

perimentally show that ST accommodates such preferences better than CPT. Königsheim et al.

(2019) focus on the local thinking parameter, which measures how much individuals’ decision

weights are distorted because of limited attention. They calibrate the parameter and argue

that the estimate depends on whether the lottery is downside or upside salient.1

We report a laboratory experiment conducted to examine the empirical validity of ST. The

experiments mentioned above test ST on the basis of its axiomatic fundamental and behavioural

assumptions, i.e., the researchers examine whether salience affects risk taking or not and how.

However, our experiment is a different exercise. The purpose of this paper is not to verify or

challenge the behavioural tenets of ST, but to compare the theory to other candidate theories

in the sense of empirical fitness and predictions. We apply the theory in a straightforward

manner to a risk choice setting where the majority of subjects exhibit unstable risk attitudes

and check how accurately the theory describes and predicts decisions. We choose the popular

CPT as the baseline model for evaluation since this theory has been tested thoroughly and it

is useful in terms of application (Gonzalez and Wu, 1999; Wu and Markle, 2008; Hey et al.,

2010; Kothiyal et al., 2014; Georgalos, 2019). The classical EUT is also included in the final

comparison. The results show that in terms of both descriptive and predictive power, CPT

outperforms ST and ST outperforms EUT. It is to be expected that EUT be dominated since

it does not account for unstable risk preferences. On the other hand, CPT and ST are racing

closely in terms of predictive power. In future research, the gap may be reduced by improving

two aspects of ST: (i) The functional representation of salience function; (ii) Deriving different

local thinking parameters for lotteries with opposite salience directions.

The structure of the paper is as follows. In Section 2, we review the investigated models

and introduce the functional forms used in the analysis. Section 3 introduces the experimental

design. The results are presented in Section 4. Section 5 concludes.

1We examined the local thinking parameter in the same manner. See Section 4.4 for details.
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2 Review of theories

The theories under investigation are EUT, CPT and ST. In this section, we review the

theories and present the preference functional used in our analysis. We also explain how the

theories can (or cannot) account for phenomena related to unstable risk preferences. Kahneman

and Tversky (1979)’s version of common consequence effect example (Equation 1) is used for

illustration. In their experiment, subjects are asked to choose between L(c) and R(c) for

different values of c. It is clear that R(c) is the safer option for any c. The results show that

the majority of subjects choose the safer option R(c) when c = 2400. However, most of them

switch to the riskier option L(c) when c = 0.

L(c) =


2500, with prob. 0.33

0, 0.01

c, 0.66

; R(c) =


2400, with prob. 0.34

c, 0.66

(1)

Expected Utility Theory

An EUT agent’s preference order over L(c) and R(c) does not depend on the value of c

because of the independence axiom, and her risk preference can be characterised simply by the

curvature of the utility function. Our chosen utility function is:

U(x) = xτ (2)

where τ > 0. Note that 0 < τ < 1 indicates risk-averse, τ = 1 indicates risk neutral, and τ > 1

indicates risk-seeking preferences.

Cumulative Prospect Theory

CPT is an advanced version of prospect theory. In the basic expected utility framework, a

subject is assumed to have an underlying value function and the utility is linear in probabilities.

Prospect theory maintains the idea of the fixed value function, but the value is relative to a

reference point. However, instead of using raw probabilities as decision weights, the theory

converts the probabilities into decision weights according to a non-linear weighting function.
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Kahneman and Tversky (1979) derive the weighting function based on psychological insights

and the function overweights small probabilities and underweights moderate and high proba-

bilities. In terms of the Kahneman and Tversky (1979)’s common consequence effect example,

when c switches from 0 to 2400, the probability associated with the zero payoff in L(c) drops

significantly (from 0.67 to 0.01). Thus the probability is being overweighted, and subjects

choose the safer option R(c).

The shape of the non-linear weighting function plays a vital role in explaining the common

consequence effect and other anomalies. However, a mere monotonic transformation of outcome

probabilities causes violations of stochastic dominance and the problem of non-additivity.2

To solve these problems, Tversky and Kahneman (1992) modified the weighting strategy by

incorporating rank-dependent utility (Quiggin, 1982): Instead of transforming each probability

separately, the new model transforms the entire cumulative distribution function. Considering

a risky prospect which is represented as n pairs of (xi, pi), where xi is the payoff and pi is the

corresponding probability, and x1 < x2 < ... < xn, the decision weight πi equals w(pi+...+pn)−

w(pi+1 + ... + pn). w(.) is the cumulative probability weighting function, and w(pi + ... + pn)

measures the probability of getting a value at least as good as xi. On the other hand, the

features of the value function are maintained. The value function is defined on deviations from

a reference point, is concave for gains and convex for losses and it is steeper for losses than for

gains. With these weighting and value functions, CPT allows for unstable risk preferences, in

particular, subjects become risk-averse for gains and risk-seeking for losses in high probability

events, while they switch to risk-seeking for gains and risk-averse for losses in low probability

events.

We follow the original parametric representation of the cumulative probability function

and value function of Tversky and Kahneman (1992). Our experiment does not deal with

2Consider the following example. Lottery A has two outcomes: 1 and 100, and the corresponding probabilities
are 0.01 and 0.99. Lottery B’s outcomes are all the integers from 1 to 100, and each outcome corresponds to
a probability of 0.01. Obviously, lottery A first-order stochastically dominates lottery B. However, violations
of stochastic dominance may occur if the outcome probabilities are distorted in the manner of a monotonic
weighting function (low probabilities get larger while high probabilities get smaller). Moreover, for lottery B,
the weights obviously do not add to unity after the distortion.
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losses,3 thus the weighting function w(p) is:

w(p) =
pγ

(pγ + (1− p)γ)1/γ
(3)

where 0 < γ < 1. The value function is:

v(x) = xα (4)

where 0 < α < 1, and we assume that the reference point for evaluation is zero.

Salience Theory

Unlike CPT or several other generalisations of EUT which focus on the shape of the prob-

ability weighting function, the key point of ST is that the distortion on probabilities depends

on the payoffs of both lotteries, specifically, on “how salient a state is”. Bordalo et al. (2012)

refer to decision makers as local thinkers, i.e., they can only think “locally” due to limited

attention or cognitive limitations. Therefore, a local thinker can only focus on (or process) the

most salient state, and tends to overweight it. We present the model with a two-lottery choice

set {L1, L2} where both lotteries have two possible outcomes, i.e., Li = (x1i , pi;x
2
i , 1−pi) where

x1i , x
2
i are the possible outcomes, pi, 1 − pi are the corresponding probabilities, and i ∈ {1, 2}.

This choice problem can be described as a set of states of the world S = {s1, s2, s3, s4}, and the

four possible states s ∈ S are presented in Table 1. State s has a payoff combination of (xsi , x
s
j)

where j ∈ {1, 2} and j 6= i, and a probability of πs.

Table 1: Possible states of the world in the example
States Payoff combination Probability

s1 (xs11 , x
s1
2 ) ≡ (x11, x

1
2) πs1 = p1p2

s2 (xs21 , x
s2
2 ) ≡ (x11, x

2
2) πs2 = p1(1− p2)

s3 (xs31 , x
s3
2 ) ≡ (x21, x

1
2) πs3 = (1− p1)p2

s4 (xs41 , x
s4
2 ) ≡ (x21, x

2
2) πs4 = (1− p1)(1− p2)

A salience function σ(.) is defined over the payoff combinations and is used to measure the

3We choose not to deal with losses for two reasons: Firstly, ST and CPT have the same degrees of freedom
if negative payments are not included. This makes the comparison simpler and more meaningful. Secondly,
including losses increases the decisions subjects need to make and inevitably increases the experiment time,
which was a constraint in our case.
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perceived difference between the two payoffs in each state. It satisfies two conditions: ordering

(two payoffs define an interval for each state, and a state is less salient if the corresponding

interval is a subset of the alternative) and diminishing sensitivity (keeping the payoff difference

constant, a state is less salient when payoffs lies futher from zero).4 Bordalo et al. (2012)

suggest the following continuous and bounded function for state s:

σ(xsi , x
s
j) =

∣∣xsi − xsj∣∣
|xsi |+

∣∣xsj∣∣+ β
, (β > 0). (5)

The local thinker ranks the states according to the value of the salience function, with

lower ks (ks is a positive integer and it represents the ranking of state s) indicating higher

salience, and the distorted decision weight is given by:

πds = πs ×
δks∑

r∈S

δkrπr
(6)

where 0 < δ ≤ 1, and δ is the local thinking parameter which measures how much a local

thinker’s attention is drawn by the salient states.
∑

r δ
krπr is used to normalize

∑
πds to 1.

Therefore, states ranked higher (the most salient states) are overweighted and states ranked

lower (the least salient states) are under-weighted. Bordalo et al. (2012) assume a linear value

function v(x) = x, and the local thinker evaluates Li as:

V (Li) =
∑
s∈S

πdsx
s
i (7)

Consider Kahneman and Tversky (1979)’s common consequence effect example. When

the common consequence c is 0, the most salient state is associated with the payoff combi-

nation (2500, 0), which makes the riskier L(c) more attractive. However, when the common

consequence c becomes 2400, the most salient state becomes (0, 2400) where the payoff of R(c)

clearly dominates. Thus, subjects choose the safer option R(c).

Several auxiliary assumptions on the basic ST framework are necessary in order to obtain

reasonable parameter estimates. The ranking ks in Equation 6 creates a discontinuity in the

utility function, which gives us difficulty in estimating the salience function and it does not

4Bordalo et al. (2012) also mentioned a “reflection condition” to extend the theory to losses, which is not
within the scope of our study.
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contain the information of the magnitude of salience in distortions. Since a more salient state

is associated with a smaller ks, we replace ks with 1
σ(xsi ,x

s
j)

to smooth out the utility function.5

Also, to avoid the denominator becoming zero, we modify the salience function to the following:

σ(xsi , x
s
j) =

∣∣xsi − xsj∣∣+ θ

|xsi |+
∣∣xsj∣∣+ β

, (θ, β > 0), (8)

without loss of generality, we set β = λθ with λ > 0. This salience function satisfies the ordering

condition indicating that σ(xsi , x
s
j) increases with the gap between xsi and xsj . Therefore, for

any fixed xsj , the function is increasing in xsi . In a special case when xsj = 0 and xsi > 0, we

have:

σ(xsi , 0) =
xsi + θ

xsi + λθ
= 1 +

(1− λ)θ

xsi + λθ
, (λ, θ > 0), (9)

to satisfy the ordering condition, λ should be larger than 1. We set λ to e (Euler’s Number)

for calibration purposes.6 We use the following salience representation in the analysis:

σ(xsi , x
s
j) =

∣∣xsi − xsj∣∣+ θ

|xsi |+
∣∣xsj∣∣+ eθ

, (θ > 0), (10)

In general, this setting satisfies the conditions of the theory and gives us reasonable esti-

mates of θ and δ. Regarding the value function, we stick to the linear value so that CPT and

ST have the same number of parameters.

3 The Experiment

We use a series of binary choice questions to elicit risk preferences. In the experimental

practice of risk preferences elicitation, researchers usually ask subjects three forms of questions:

binary choice questions, reservation price questions and allocation questions (Hey and Pace,

2014).7 Allocation questions are not our choice because of the context-dependence nature of

5Following Bordalo et al. (2012)’s suggestion, we replaced ks with −σ(xsi , x
s
j) at first. However, this approach

is inappropriate for our case since it yields extreme estimates (both δ and β are extremely small).

6If λ is a rational number, for any payoff combinations which satisfy
|xs

i−x
s
j |

|xs
i |+|xs

j |
= 1

λ , σ(xsi , x
s
j) is a constant

which clearly violates diminishing sensitivity. The irrational number e is chosen only for its aesthetic feature
and it is mathematically irrelevant.

7A typical allocation question design is like the following: subjects are given a fixed amount of tokens and
they are asked to allocate the tokens to events with different probabilities. Subjects maximise their preference
functions to make the allocation decisions.
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ST. In particular, an ST agent judges a lottery differently when the alternative is different,

hence the theory does not have a unified preference functional form for a single lottery, which

makes the allocation question method infeasible. Accordingly, the other two forms of questions

have special advantages. According to Hey et al. (2010), binary choice questions “are easier to

explain to subjects; easier for them to understand; and less prone to problems of understanding

associated with the various mechanisms for eliciting”, while obtaining the reservation prices

(certainty equivalents) of lotteries enhances the information in data. We believe that the

attractions of both methods are important to our experiment. Therefore, in the first stage,

we let subjects make choices between a lottery and a set of consecutive sure payoffs, so that

the certainty equivalents of the lottery can be estimated if necessary.8 In the second stage, a

subject is given a series of binary choice questions and she is paid according to her decision of

one randomly chosen question. The observations derived in the two stages are used for different

purposes, which we shall explain later.

As mentioned above, we shall judge a theory based on its descriptive and predictive power

rather than its behavioural hypothesis. We follow Hey et al. (2010) in determining which

theory is ‘better’. Briefly speaking, subjects are required to answer two sets of binary choice

questions, with part of the observations used for calibration, and the remaining part used for

predictive capacity testing. In particular, predictive capacity can be measured by predicted

log-likelihoods, and the theory which has larger predicted log-likelihoods is considered to be

outperforming the others. We design our experiment in two stages: Stage 1 is used for calibra-

tion and testing descriptive power, and Stage 2 is used for testing predictive capacity. Stage 1

questions are designed to give enough information for calibration. Stage 2 questions focus on

two typical phenomena which exhibit unstable risk attitudes: risk-seeking behaviour (typically

a risk-averter might prefer a relatively small chance of winning a big prize to the expected value

of such lottery) and the common consequence effect (the preference order over two lotteries is

affected by the change in a common consequence).

8Subjects’ certainty equivalents or reservation prices are not elicited directly. However, this design gives us
enough information to infer them.
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Stage 1

In Stage 1, each subject faces 36 rounds, and in each round, she needs to make decisions

between a risky prospect and a sure outcome eight times. This design allows us to get as much

information as we would by asking subjects for their reservation prices. In a typical round, the

screen displays a lottery on the left and a descending series of eight sure outcomes on the right

side, which is linearly spaced between a value £0.5 higher than the low outcome in the lottery

and a value £0.5 lower than the high outcome (see Figure A.1 for a sample screen-shot). The

basic design consisted of four two-outcome gambles crossed with nine probabilities associated

with the high outcome. The two outcomes are (in pounds) (50 - 0), (20 - 0), (15 - 5), (20 -

10). The nine probabilities are .01, .05, .10, .25, .50, .75, .90, 95, and .99. We have in total

36 prospects and hence 36 rounds in Stage 1. The order of the pages is randomised for each

subject.

Stage 2

Two types of choice questions are used in Stage 2 to examine the mentioned risk-seeking be-

haviour and the common consequence effect: the ‘mean-preserving’ question (a choice between

a sure payoff and its mean-preserving spread) and the common consequence effect question (a

choice between two lotteries which share a common consequence). After a series of pilots, we

chose to have 40 questions in Stage 2 because of budget and time constraints. We decided to

use 20 ‘mean-preserving’ questions and 20 common consequence effect questions, with every

subject answering the same set of questions with different and randomised orders.9

The ‘mean-preserving’ question takes the following form:

A =


x+ (1−p)a

p
, p

x− a, 1− p
; B =

{
x, 1 (11)

where the expected values of A and B are equal. We firstly set x ∈ {5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15}, and let a be any positive integer smaller than x. p is set to be a number in {0.25,

0.4, 0.5, 0.6, 0.8} for two reasons: First, we pay subjects with real money, so payments with

decimal positions less than two are preferred. Therefore, probabilities like 0.33 and 0.66 are not

9See Appendix B for questions used in real sessions.
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included; Second, we do not consider small p such as 0.01 and 0.05, since small probabilities

would make the associated payoffs very large, and we constrain the largest payment in Stage 2 to

be £25.10 This leaves us with 5500 combinations.11 After discarding questions with excessively

high payments and those that are not payable (having more than two decimal points), 159

questions are left, and 20 of them are picked randomly for Stage 2. Only 20 questions are

selected out of 5500, yet we argue that the selection is to some extent representative. After

cutting off around 5000 combinations, the remaining still cover a wide range of payoffs. For

instance, the sure payoff (x) ranges in {5, 6, 7, 9, 10, 11, 12, 13}, and the higher payoff

(x + (1−p)a
p

) in the lottery ranges in {6.5, 7.0, 8.0, 8.5, 9.0, 10.0, 11.0, 11.5, 12.0, 13.0, 14.5,

15.0}. Also, a potential drawback of using a comprehensive list of questions is that participants

are likely to notice the pattern of the questions even if the order is randomised.

The common consequence effect question takes the following form:

C =


h, ph

z, pz

0, p0

; D =


l, ph + p0

z, pz

(12)

where h > l and z ∈ [0, l]. ph, pz, and p0 are the corresponding probabilities for payoffs h, z

and 0 respectively. The probability corresponding to l is ph + p0. This form of pairwise choice

can be seen as a generalised form of Tversky and Kahneman (1992)’s common consequence

effect example. The consistently observed behaviour is that subjects shift from preferring the

riskier option to preferring the safer one when z changes from 0 to l, i.e., when z = 0, C � D,

and when z = l, C ≺ D. Also, we believe that this behaviour is more likely to be triggered if h

is only slightly larger than l and p0 is relatively small.12 Therefore, considering the budget, we

set h ∈ {10, 11, 12, 13, 14, 15}, and l = h − a where a ∈ {1, 2}, and p0 ∈ {0.01, 0.05}. Also,

we let ph ∈ {0.1, 0.33, 0.5, 0.75, 0.9} and z ∈ {0, l/4, l/2, 3l/4, l}. This leaves us with 600

10Subjects can usually finish Stage 2 in less than 30 minutes, and a possible payment of £25 is sufficiently
large.

11For any k ∈ x, we have a ∈ {1, 2, ..., k-2, k-1}. There are five possible probabilities, and x ∈ {5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15}. Therefore, the total number of combinations is 5×
∑15
k=5 k(k−1) = 5×(

∑15
k=5 k

2−
∑15
k=5 k) =

5× (
∑15
k=1 k

2 −
∑4
k=1 k

2 −
∑15
k=5 k) = 5500.

12Allais (1953)’s original example satisfies a similar form, and simple intuition also supports the idea. For
instance, if h is far greater than l, it is likely that C is preferred to D when z = l, and if p0 is very large, subjects
would preferred D to C when z is 0 as they would not risk a huge chance (p0) of getting l for a slightly larger
outcome h.
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combinations, and then we eliminate combinations for which the two theories yield the same

predictions conditional on the pilot calibrations (α = 0.86,γ = 0.62, θ = 3.28 and δ = 0.67).13

150 questions are left and we randomly choose 20 questions for the remaining part of Stage 2.

Implementation

Our study has a sample size of 48 and subjects are students from the University of

Southampton crossing all disciplines, 47% of them being females.14 The experiment was con-

ducted in the Social Sciences Experimental Laboratory (SSEL) at the University of Southamp-

ton using oTree (Chen et al., 2016). The average payment per subject was £16.07 and each

session of the experiment lasted around 60 minutes including the payment stage. The payment

includes a participation fee of £4, a fixed Stage 1 fee of £4 and the payment for a randomly cho-

sen question of Stage 2 (the payment was determined by a ten-sided die, see details in Appendix

A).15 At the beginning of each session, subjects read the instructions, and the experimenters

show them the die which will be used to determine their payoffs at the end of the experiment.

Experimenters try to ensure that subjects trust the instructions, and that their payments only

depend on their decisions and luck. There is no time constraint in answering the questions, and

subjects do not need to wait for others to start the next question or stage. Some subjects may

finish before others, and the following statement is displayed on their screens: “We are waiting

for everyone to finish. Thank you so much for your patience”. After everyone is finished, a

random question is selected by the computer for each subject and is displayed on the screen

with the subject’s decision. The experimenters then go to the subjects one by one to roll the

dice and record the payment. Subjects collect their payments and they are free to leave.

13In terms of the anomalies which the two theories can explain, CPT and ST still overlap. If the purpose is
to ‘race’ between two theories, examining the overlapping part is not very meaningful. We shall try to focus on
questions for which the two theories yield different predictions. Also, please note that the pilot sessions were
conducted at the University of Southampton with 42 subjects.

14We recruited 49 subjects using ORSEE (Greiner, 2015) at first and exclude one subject because of extreme
calibrations. This subject has τ = 2.75−10, seut = 6.88−9, γ = 0, scpt = 0, and δ = 8.04−14 (see Section 4.1
for the notations). A close look at the data reveals that this subject is extremely risk-averse and they always
chose the sure payoff in Stage 1 (for all 288 decisions). This is why τ , γ, and δ are extremely small, and the
zero standard deviation of the error term makes it impossible to calculate the out-of-sample likelihoods. Also,
it is clear that for such subject, the strategy in Stage 2 would be simply choosing the safer option. It is indeed
the case for the subject, and out of 40 questions, they selected the safer option 38 times.

15We pay subjects a fixed amount in Stage 1 since a reasonable method (such as the
Becker–DeGroot–Marschak method) to incentivise the subjects would increase the experiment time significantly,
and the calibrations in our real sessions are comparable to the literature (see Section 4.1).
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4 Results

4.1 Calibrations

The maximum likelihood method is used to estimate the parameters and obtain the pre-

dicted log-likelihoods, and assumptions need to be made regarding the stochastic nature of

the data. Assume that a subject faces n binary choice questions: (L1,R1), (L2, R2), (L3,

R3),...,(Ln, Rn), and the preference function is V (.). Then for an arbitrary question i, in the

absence of noise, the subject chooses Li (Ri) if VLi > VRi (VRi > VLi). With choice error ε,

the subject prefers Li (Ri) to Ri (Li) only if VLi − VRi + ε > 0 (VRi − VLi + ε > 0). Following

the Fechner error specification,16 we assume that the error term ε is normally distributed with

mean zero and variance s2. Let Li denote the likelihood function of question i, and we have

Li = Prob(ε > VRi − VLi). Since ε ∼ N (0, s2), Li equals 1 − Φ[(VRi − VLi)/s] where Φ(.) is

the cumulative distribution function of the standard normal distribution, and the log-likelihood

function is written as follows:

n∑
i=1

ln(1− Φ[(VRi − VLi)/s]). (13)

Table 2: Descriptive Summary of Estimates

Theory Parameter Mean Median s.d.

EUT τ 0.71 0.69 0.28

seut 3.34 1.67 7.22

CPT α 0.80 0.81 0.18

γ 0.66 0.64 0.19

scpt 2.42 1.61 3.51

ST θ 29.03 1.23 106.76

δ 0.67 0.72 0.30

sst 6.78 5.47 4.70

Note: The results exclude one subject for the reasons explained in

footnote 14.

16We use the Fechner error story in our analysis, since it is relatively simple and most commonly applied in
the relevant literature.
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Figure 1: Distributions of estimates

(a) (b)

(c) (d)

(e)
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Observations of Stage 1 are used to pinpoint the functional form. The calibrations are at

the individual level, and the summary of the results is presented in Table 2. The calibration

result for EUT shows that the majority of subjects are risk-averse (42 out of 48), and for most

of them, τ ranges from 0.5 to 0.9 (see Figure 1a). In terms of α and γ in CPT, the distributions

of the values are depicted in Figures 1b and 1c. Comparing Figure 1a to Figure 1b, we see that

incorporating non-linear probabilities affects the curvature of the value function significantly.

Also, the fact that a high fraction of subjects has α near 1 may indicate that the S-shaped

probability weighting function is crucial in describing the decision patterns. The calibrations

are similar to the pilot sessions in which the medians of α and γ are 0.86 and 0.62 respectively.

Besides, they are comparable to the original estimations made by Tversky and Kahneman

(1992) (the medians of α and γ are 0.88 and 0.61). Regarding the calibrations of ST, δ is

comparable to the pilot session calibrations (a median of 0.67) and Bordalo et al. (2012)’s

calibration (0.7). Additionally, it is roughly consistent with Königsheim et al. (2019)’s result

which shows that δ is between 0.7 and 0.8. However, according to Table 2, the estimates

of θ show significant heterogeneity among individuals. Figure 1d depicts the distribution of

θ, which shows that most estimates are smaller than 20. To be more specific, for 39 among

48 subjects, θ is smaller than 10. Considering only those 39 subjects, the mean and median

become 1.45 and 0.51, and the s.d. reduces to 1.87. Therefore, our estimates of θ are in fact

not decentralised. Outliers with extremely large θ (greater than 400) magnify the standard

deviation. We include the outliers into our analysis, since they do not affect the out-of-sample

log-likelihoods. However, we acknowledge that our functional form of the salience function is

not optimal. Optimising the form of the salience function is the topic of future research. In

general, we obtain reasonable estimates of the parameters, and this is important as the result

is sensitive to calibrations.

4.2 Descriptive Power

The measure of descriptive power is based on the fitted values of the maximised log-

likelihoods in Stage 1. The fitted log-likelihoods are not compared directly since EUT has

a different number of parameters relative to CPT and ST. To take into account the different

degrees of freedom of the compared models, we apply the Akaike Information Criterion (Akaike,
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1973)17 which takes the following form:

AIC = 2k − 2ln(L), (14)

where k denotes the degrees of freedom, and ln(L) represents the log-likelihood function. We

firstly compare the mean, the median as well as the 5% and 10% trimmed means of AIC values

across all subjects, and we find that CPT, in general, has the best fit and ST outperforms EUT.

The results are reported in Table 3 (a smaller AIC value corresponds to a better fit). Besides,

Akaike weights (Burnham and Anderson, 2002) are calculated using CPT as the benchmark

model.18 The average Akaike weights for EUT, CPT and ST are 14.97%, 62.53% and 22.5%

respectively. This indicates that the probability of CPT being the best fitting model among the

candidates is more than 60%, and ST has a slightly better chance than EUT. Also, we analyse

the data at the individual level, and find the best fitted model for each subject. We report the

percentages of subjects for which a given theory yields the best, second best, and worst fit in

Table 4. The ‘1st’ column indicates that for 56.25% of subjects CPT performs best, and the

percentages for EUT and ST are 18.75% and 25% (comparable to the Akaike weights). Further,

Figure 2 shows the Kernel density estimation of AIC for the three theories and it confirms the

notion that CPT outperforms ST, and ST outperforms EUT in terms of descriptive adequacy.

Table 3: Summary of AIC

Theory Mean Mean0.05 Mean0.1 Median s.d.

EUT 202.62 202.67 202.72 200.04 67.42

CPT 165.85? 164.56? 163.84? 153.07? 70.21

ST 188.01 190.03 186.95 186.28 77.40

Note: Mean0.05 and Mean0.1 represents the 5% and 10% trimmed means.

? indicates the best performing model in each column.

17Sugiura (1978) and Hurvich and Tsai (1989) modify the statistic for small-sample studies. The corrected

AIC equals to 2k − 2ln(L) + 2k(k+1)
n−k−1 where n is the number observations, and it punishes the model if there

are too many parameters comparing to the sample size. We decide not to implement this correction since for
each subject we have 8 × 36 = 288 observations, and the degrees of freedom are 1 (for EUT) and 2 (for CPT
and ST).

18According to Burnham and Anderson (2002), Akaike weights are determined as follows. One wants to
select the best model from N candidates (Model 1 to Model N), using Model b as the benchmark model (in
practice, Model b is the one which is presumed to be the best). Firstly, one computes ∆i = AICi − AICb for

i ∈ {1, 2, 3, ..., N}, and AICb is the AIC value for model b. Then the Akaike weight = exp(−∆i/2)∑N
n=1 exp(−∆n/2)

. The

interpretation is straightforward: Akaike weights indicate the probability that a model is the best among the
whole set of candidates.
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Table 4: Ranking based on AIC

Theory 1st 2nd 3rd

EUT 18.75% 22.92% 58.33%

CPT 56.25% 37.50% 6.25%

ST 25.00% 39.58% 35.42%

Figure 2: Kernel density estimation of AIC

4.3 Predictive Power

Combined with the estimated model, the observations of each subject in Stage 2 are

put back into Equation 13 to calculate the predicted log-likelihood which is used to measure

the predictive power. The predicted log-likelihoods are analysed without any modification

related to different degrees of freedom of theories, since overfitted models have disadvantages

when comparing out-of-sample log-likelihoods (Hey et al., 2010). Table 5 reports the major

statistics about predicted log-likelihoods. A similar pattern to descriptive power is found: CPT

dominates among the three theories, and ST outperforms EUT.19 This time, however, CPT

outperforms ST by a very insignificant margin (-25.41 vs -25.98). Similarly, the Kernel density

estimation (Figure 3) shows that the predicted log-likelihoods of EUT are centralised between

roughly -30 and -25, and the predicted log-likelihoods of CPT and ST are decentralised with

19On the one hand, all models outperform a random choice mechanism (on average). The predicted log-
likelihood of a ‘coin-tosser’ (an agent who flips a coin every time he chooses between two alternatives) making
40 decisions is ln(0.5) × 40 ≈ −27.73. On the other hand, behaviours vary from individual to individual. In
fact, there are around 29.2% of subjects who behave more similarly to a ‘coin-tosser’, rather than to an EUT
agent. The percentages for CPT and ST are 12.2% and 22.9%.
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similar distributions (fat tail on the right side). Further, in Table 6, we report the percentage

of subjects for whom each theory is dominating. Specifically, CPT wins for the majority of the

subjects (60.42%), while for roughly half of the subjects (56.25%), ST is the second best, and

EUT is ‘the worst performer’ for 58.33% of the subjects.

Further, Figure 4 shows the scatter plots of predicted log-likelihood against AIC for the

three theories, and it demonstrates a negative correlation between the two statistics, i.e., pos-

itive correlation between descriptive and predictive power. The implication that theories with

better descriptive ability are associated with higher predictive ability, in line with previous

experiments, such as Hey et al. (2010), Hey and Pace (2014) and Georgalos (2019).

Table 5: Summary of predicted log-likelihoods

Theory Mean Mean0.05 Mean0.1 Median s.d.

EUT -27.20 -27.34 -27.35 -27.40 1.51

CPT -25.41? -25.11? -25.27? -26.12? 5.82

ST -25.98 -26.01 -26.09 -26.63 2.81

Note: Mean0.05 and Mean0.1 represents the 5% and 10% trimmed means.

? indicates the best performing model in each column.

Table 6: Ranking based on predicted
log-likelihoods

Theory 1st 2nd 3rd

EUT 18.75% 22.92% 58.33%

CPT 60.42% 20.83% 18.75%

ST 20.83% 56.25% 22.92%

4.4 Additional Analysis

Linear Utility vs Non-linear Utility: How Does It Matter?

The above results show that ST achieves predictive power similar to CPT, and it does not

require a non-linear value function. In the framework of ST, most shifts of risk preferences can

be explained by the ‘ordering’ and the ‘diminishing sensitivity’ properties of the salience func-

tion, as well as the function’s convexity (Bordalo et al., 2012, p. 1278 -1279),20 and the shape

20According to Bordalo et al. (2012), a salience function is convex if diminishing sensitivity becomes weaker
as the overall payoff gets higher.
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Figure 3: Kernel density estimation of predicted log-likelihoods

Figure 4: Scatter of predicted log-likelihood against AIC

of the value function does not play a crucial role. However, the curvature of the value function

is important for CPT. We examine how linear/non-linear utility affect the performance of both

theories by introducing one variation of each. One is CPT with a linear value function (hence-

forth denoted as LCPT), and the other one is ST with a non-linear value function (henceforth

denoted as NST). The parametric representation of LCPT is identical to CPT, except that the

value function is linear, i.e., v(x) = x. The parametric representation of NST is identical to
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ST, except that the value function is non-linear, i.e., v(x) = xτ
′
, where τ ′ > 0. For LCPT,

the weighting function is pγ
′

(pγ′+(1−p)γ′ )1/γ′ , where 0 < γ′ < 1. For NST, the salience function is:

|xsi−xsj|+θ′
|xsi |+|xsj|+eθ′

, where θ′ > 0, and the local thinking parameter is δ′ ∈ (0, 1]. The summary of the

estimated parameters and the distributions of the estimates are presented in Appendix C.

We report the average level of AIC and predicted log-likelihoods of LCPT and NST in

Table 7. Comparing the result in Table 7 with the results in Table 3 and Table 5, we see that

the statistics for LCPT and NST roughly lie between CPT and ST. The pattern is clear for

AIC, but not for predicted log-likelihoods, as the gap between CPT and ST is small in the first

place. We shall take a close look at the Kernel density estimations in Figure 5. Despite the fact

that the differences are small, it is unambiguous that, comparing to CPT, the descriptive and

predictive performance of LCPT is closer to ST and NST does not perform better than ST.

Also, it is worth noticing that in terms of applications, the calibration for LCPT is stabler than

ST, and ST needs one extra degree of freedom. We believe that further work should focus on

the parametric form of the salience function, since assuming non-linear utility does not improve

performance.

Table 7: Summary of AIC and predicted log-likelihoods (LCPT
and NST)

Mean Mean0.05 Mean0.1 Median s.d.

LCPT
AIC 178.65 177.93 176.66 168.82 68.87

predicted -25.62 -25.76 -25.85 -26.84 3.47

NST
AIC 176.07 175.20 174.85 163.57 72.10

predicted -25.54 -25.69 -25.80 -26.64 3.20

Note: Mean0.05 and Mean0.1 represents the 5% and 10% trimmed means.

The Local Thinking Parameter

The local thinking parameter is δ in Equation 6, and it measures how much a local thinker

differs from a rational economic decision maker (when δ = 1, the decision maker does not

distort the decision weights and ST reduces to expected value with the linear utility function).

Königsheim et al. (2019) focus on this parameter and three of their main results are: i) the

parameter is between 0.7 and 0.8; ii) the parameter does not change much when non-linear

utility is assumed; iii) the parameter is not stable, in the sense that it is smaller if the choice
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Figure 5: Kernel density estimations of AIC and predicted
log-likelihood (LCPT and NST)

(a) (b)

(c) (d)

question has a salient downside.21 Our estimates of δ and δ′ are about 0.7 which are in line

with their first and second results (see Section 4.1 and Appendix C). However, further analysis

reveals an exactly opposite result than their third result, i.e., we find heterogeneity, but a salient

downside corresponds to significantly larger δ.

The design of Stage 1 provides a natural setting to examine this possible heterogeneity

in δ. There are eight questions in each round of Stage 1, and four of them have a salient

downside and the other four have a salient upside. Taking the sample question in Figure A.1

as an example, apparently, the upper four options in OPTION B column make the downside

of OPTION A (receiving 0 pounds) more salient, while the bottom four options make the

upside (receiving 20 pounds) more salient. We apply MLE to the observations of downside

21A choice question is downside salient, if the low outcomes of the relative riskier lottery are in the most
salient states. Therefore, when facing such question, a local thinker is more likely to focus on the downside of
the riskier option and prefers the safer option.
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and upside questions separately, and the estimated medians of local thinking parameters are

0.72 for questions with salient downside and 0.33 for questions with salient upside. In terms

of statistical significance, the p-value of Wilcoxon rank-sum test is 0.0009, and the alternative

is that values for the salient downside setting are more likely to be larger than the values in

the upside setting. The distributions of the values in Figure 6 confirm this. We suggest that

considering the heterogeneity of δ is a promising future direction for enhancing ST’s predictive

power.22

Figure 6: Distributions of the local thinking parameter: downside
salient vs. upside salient

5 Conclusion

We empirically test Bordalo et al. (2012)’s ST in settings where the majority of subjects

exhibit unstable risk attitudes. Firstly, we provide a formal calibration of ST, which has only

been done by Königsheim et al. (2019). We find that the local thinking parameter is about 0.7,

and the result is consistent with Königsheim et al. (2019)’s. Then, we compare ST and CPT

on the basis of the in-sample and out-of-sample log-likelihoods. Two types of binary choice

22A simple exercise using the observations in Stage 2 shows a slight increase in predictive power if we consider
the heterogeneity of δ. Questions in Stage 2 can be categorised according to the ‘directions of salience’. In terms
of the ‘mean-preserving’ questions in Equation 11, p ≥ 1

2 indicates a salient downside and p < 1
2 indicates a

salient upside. In terms of the common consequence effect in Equation 12, a sufficiently small z indicates a salient
downside (we consider z small if z ∈ {0, l/4}). Out of 40 questions in Stage 2, 25 of them are downside salient and
the remaining questions are upside salient. If the predicted log-likelihoods of questions with different salience
directions are calculated according to the corresponding calibrations, the mean of predicted log-likelihoods
becomes -25.64 which is larger than the -25.98 of Table 5.
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questions, which reveal the instability of subjects’ risk preferences are used: ‘mean-preserving’

questions and common consequence effect questions. We find that CPT outperforms ST in

terms of both descriptive and predictive power. However, the gaps are small, especially for

predictive power. After a further investigation on the linearity of the value function and the

heterogeneity of the local thinking parameter, we envision two possible pathways for improving

ST for pure application purposes: developing a new specification of the salience function and

analysing upside and downside salient settings with different local thinking parameters.

We shall conclude by an assessment of ST and its prospect as a new alternative to CPT.

ST presents reasonable descriptive and predictive power, in comparison to the highly popular

CPT. In our view, salience, in particular, the notion that people focus their attention on the

most salient aspect of the world, plays a indisputable role in choice under risk. Salience can

also be important for a variety of other economics situations, such as taxation (Chetty et al.,

2009), asset pricing (Bordalo et al., 2013a), consumer behaviour (Bordalo et al., 2013b) and

judicial decisions (Bordalo et al., 2015) etc. We anticipate that future empirical studies shall

study salience in a broader domain of judgement setting.
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Dertwinkel-Kalt, M. and Köster, M. (2019). Salience and skewness preferences. Journal of the

European Economic Association. https://doi.org/10.1093/jeea/jvz035.

Frydman, C. and Mormann, M. M. (2018). The role of salience in choice under risk: An

experimental investigation. Available at SSRN 2778822.

Georgalos, K. (2019). An experimental test of the predictive power of dynamic ambiguity

models. Journal of Risk and Uncertainty. forthcoming.

Gonzalez, R. and Wu, G. (1999). On the shape of the probability weighting function. Cognitive

Psychology, 38(1):129–166.

Greiner, B. (2015). Subject pool recruitment procedures: organizing experiments with orsee.

Journal of the Economic Science Association, 1(1):114–125.

Hey, J. D., Lotito, G., and Maffioletti, A. (2010). The descriptive and predictive adequacy of

theories of decision making under uncertainty/ambiguity. Journal of Risk and Uncertainty,

41(2):81–111.

Hey, J. D. and Pace, N. (2014). The explanatory and predictive power of non two-stage-

probability theories of decision making under ambiguity. Journal of Risk and Uncertainty,

49(1):1–29.

24

https://doi.org/10.1093/jeea/jvz035


Hurvich, C. M. and Tsai, C.-L. (1989). Regression and time series model selection in small

samples. Biometrika, pages 297–307.

Kahneman, D. and Tversky, A. (1979). Prospect theory: An analysis of decision under risk.

Econometrica: Journal of the Econometric Society, pages 263–291.

Kahneman, D. and Tversky, A. (1981). The simulation heuristic. Technical report, Stanford

University.
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Appendices

A Instruction

Introduction

Welcome and thank you for participating in today’s experiment. It is important that you

do not talk, or in any other way try to communicate during the study. You cannot use your

phone during the study. If you have any questions, please just raise your hand and wait for the

assistance.

During this experiment you will earn money. How much you earn depends on your decisions

and luck. The money will be paid to you, in cash, at the end of the experiment.

Your participation in the experiment and any information about you will be kept anonymised

and confidential. Your receipt of payment and consent form are the only places on which your

name will appear. This information will be kept confidential in the manner described in the

consent form.

The experiment has two stages. Stage 1 consists of 36 periods. In each period, you will

make choices between a lottery and a series of certain values. In Stage 2, you will make 30

choices. There will be a short questionnaire at the end.

Stage 1

The first stage will have 36 periods. In each period, the screen displays a lottery (Option

A) on the left and displays a descending series of eight sure outcomes (Option B) on the right

side. Every period has the same general form.

An example of the screen for a period is given in Figure A.1. As you can see, for each de-

cision, you must choose between Option A and Option B. You may choose Option A for some

decisions and Option B for others, and you may change your decisions and make them in any
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Figure A.1: Stage 1 sample screen

order. Once you have made all of your decisions, press the Submit button and you will be taken

to the next period. Note that after you have pressed the submit button, you will no longer be

able to change your decisions.

Stage 2

In this stage, you will need to make 30 choices. An example of the screen for a question is

given in Figure A.2. As you can see, you simply choose between Option A and Option B, and

press the Submit button to go to the next question. Similar to Stage 1, you cannot change

your decision after you have pressed the submit button.

Your payment

• You will receive a participation fee of £4 regardless of your decisions.

• You can get an additional Stage 1 fee equal to £4. Note that, if you complete Stage 1,

however leave the experiment before Stage 2 is finished, you will only earn the participa-
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Figure A.2: Stage 2 sample screen

tion fee of £4.

• After you complete Stage 2, the computer will randomly choose a question from Stage 2

and you will be paid according to this question. Depending on the random question and

the decision of yours, there are two possibilities:

1 If the Option you chose in the random question is paying an amount for sure, then

that amount will be your payment in Stage 2.

2 If the Option you chose in the random question is a lottery, you will roll a ten-sided

die to determine your payoff. For example, suppose that that Option is as follows:


Receiving £25 with probability 0.1

Receiving £5 with probability 0.9

In this case, you will roll the ten-sided die once. If a 1 comes up, then you will

receive £25 , while if a 2, 3, 4, 5, 6, 7, 8 ,9 or 0, comes up then you will receive £5.

As a further example, suppose that the probabilities in that Option have two decimal

digits: 
Receiving £20 with probability 0.33

Receiving £15 with probability 0.66

Receiving £0 with probability 0.01

In this case, you will roll the die twice. These two rolls will correspond to a number

from 00 to 99. For instance, if you roll 0, 4, it corresponds to 04; if you roll 4, 0, it

corresponds to 40. In this example, if the corresponding number you roll is 01, 02,

. . . , or 33, then you will receive £20. If your roll is 34, 35, . . . ,or 99, then you
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will receive £15. If you roll 00, then you will receive £0.

• Your payment = Participant fee (£4) + Payment in Stage 1 (£4) + Payment in Stage 2

(£0 - £15)

If you have any questions, please raise your hand now, otherwise we will begin with the exper-

iment.

B Questions in Stage 2

§ indicates ‘mean-preserving’ questions. † indicates upside salient questions. Note that in

real sessions, we randomised the display order of the questions for each subject. However, the

left-right juxtaposition remained the same as a consequence of software limitations.

1. L = (6, 1), R = (12, 0.4; 2, 0.6)§†

2. L = (6, 0.5; 4; 0.5), R = (5, 1)§

3. L = (7, 1), R = (8.5, 0.4; 6, 0.6)§†

4. L = (7, 1), R = (9, 0.6; 4, 0.4)§

5. L = (7, 1), R = (12, 0.5; 2, 0.5)§

6. L = (8, 1), R = (12.5, 0.4; 5, 0.6)§†

7. L = (8, 0.5; 6, 0.5), R = (7, 1)§

8. L = (9, 1), R = (15, 0.25; 7, 0.75)§†

9. L = (9, 0.25; 5, 0.75), R = (6, 1)§†

10. L = (9, 0.5; 5, 0.5), R = (7, 1)§

11. L = (9, 0.76; 6.5, 0.24), R = (10, 0.75; 6.5, 0.24; 0, 0.01)

12. L = (10, 1), R = (11, 0.8; 6, 0.2)§

13. L = (10, 1), R = (11.5, 0.4; 9, 0.6)§†

14. L = (10, 0.11; 2.5, 0.89), R = (12, 0.1; 2.5, 0.89; 0, 0.01)†

15. L = (10, 0.55; 2.5, 0.45), R = (12, 0.5; 2.5, 0.45; 0, 0.05)†

16. L = (10, 0.11; 5, 0.89), R = (11, 0.1; 5, 0.89; 0, 0.01)

17. L = (10, 0.76; 5, 0.24), R = (11, 0.75; 5, 0.24; 0, 0.01)
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18. L = (10, 0.75; 6, 0.2; 0, 0.05), R = (8, 0.8; 6, 0.2)

19. L = (10, 0.5; 6.5, 0.49; 0, 0.01), R = (9, 0.51; 6.5, 0.49)

20. L = (10, 0.34; 7.5, 0.66), R = (11, 0.33; 7.5, 0.66; 0, 0.01)

21. L = (11, 1), R = (12, 0.5; 10, 0.5)§

22. L = (12, 0.11; 0, 0.89), R = (13, 0.1; 0, 0.9)†

23. L = (12, 1), R = (15, 0.8; 0, 0.2)§

24. L = (12, 0.4; 7, 0.6), R = (9, 1)§

25. L = (12, 0.8; 7, 0.2), R = (11, 1)§

26. L = (13, 0.9; 0, 0.1), R = (12, 0.95; 0, 0.05)†

27. L = (13, 0.5; 2.5, 0.45; 0, 0.05), R = (11, 0.55; 2.5, 0.45)†

28. L = (13, 0.11; 3, 0.89), R = (15, 0.1; 3, 0.89; 0, 0.01)†

29. L = (13, 0.11; 6.5, 0.89), R = (15, 0.1; 6.5, 0.89; 0, 0.01)

30. L = (13, 0.33; 8, 0.66; 0, 0.01), R = (11, 0.34; 8, 0.66)

31. L = (13, 0.51; 9.5, 0.49), R = (14, 0.5; 9.5, 0.49; 0, 0.01)

32. L = (14, 0.9; 0, 0.1), R = (13, 0.95; 0, 0.05)†

33. L = (14, 0.75; 6.5, 0.24; 0, 0.01), R = (13, 0.76; 6.5, 0.24)

34. L = (14, 0.33; 9.5, 0.66; 0, 0.01), R = (13, 0.34; 9.5, 0.66)

35. L = (14, 0.75; 9.5, 0.24; 0, 0.01), R = (13, 0.76; 9.5, 0.24)

36. L = (14.5, 0.8; 2, 0.2), R = (12, 1)§

37. L = (15, 0.9; 3.5, 0.09; 0, 0.01), R = (14, 0.91; 3.5, 0.09)†

38. L = (15, 0.1; 5, 0.9), R = (6, 1)§†

39. L = (15, 0.25; 11, 0.75), R = (12, 1)§

40. L = (15, 0.5; 13, 0.5), R = (14, 1)§
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C Additional Tables and Graphs

Table C.1: Descriptive Summary of Estimates
(LCPT and NST)

Theory Parameter Mean Median s.d.

LCPT γ′ 0.60 0.58 0.22

slcpt 4.53 3.32 3.94

NST τ ′ 0.82 0.81 0.28

θ′ 72.94 1.97 202.62

δ′ 0.66 0.77 0.32

snst 3.98 2.26 4.60

Note: The results exclude one subject for the reasons explained in

footnote 14.

Figure C.1: Distributions of estimates for LCPT and NST

(a) (b)

(c) (d)
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